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LIMITED LABEL LEARNING – WHY?

• For practitioners: there is an economic incentive to reduce 
the amount of labelled data needed

• For researchers: the goal of AI is to build models with 
human-level learning capabilities

• Humans learn from 5 samples, not 5,000!
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LIMITED LABELS LEARNING APPROACHES

Limited label availability approaches
Active learning

• Few labels 
provided by an 
oracle, based on 
model’s queries

• Definition of a 
query policy 
(when does the 
model request 
new labels?)

• Model identifies 
regions of input 
space of low 
confidence

Semi-supervised 
learning

• Limited labelled 
data, unlabelled
data often 
abundant

• Build model on 
labelled + 
unlabelled data, 
infer missing 
labels (inductive)

• Infer new labels 
based on 
properties of 
known points 
(transductive)

Domain 
adaptation

• Labelled data for 
other domains, 
no labelled data 
for target domain

• Supervised 
learning on 
resource-rich 
domain

• Transfer 
technique to 
propagate 
knowledge to 
target domain

Unsupervised 
learning

• No labels 
available

• Learn cluster 
membership

• Learn feature 
representation

• Find recurring 
patterns in data
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LIMITED LABELS LEARNING APPROACHES:
MAIN CONTRIBUTIONS

Limited label availability approaches
Active learning

• Few labels 
provided by an 
oracle, based on 
model’s queries

• Definition of a 
query policy 
(when does the 
model request 
new labels?)

• Model identifies 
regions of input 
space of low 
confidence

Semi-supervised 
learning

• Limited labelled 
data, unlabelled
data often 
abundant

• Build model on 
labelled + 
unlabelled data, 
infer missing 
labels (inductive)

• Infer new labels 
based on 
properties of 
known points 
(transductive)

Domain 
adaptation

• Labelled data for 
other domains, 
no labelled data 
for target domain

• Supervised 
learning on 
resource-rich 
domain

• Transfer 
technique to 
propagate 
knowledge to 
target domain

Unsupervised 
learning

• No labels 
available

• Learn cluster 
membership

• Learn feature 
representation

• Find recurring 
patterns in data
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s 2-step training of
self-organizing 

maps

Explicit 
confidence-based 

FixMatch

Cross-lingual 
propagation of 

sentiment 
information
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UNSUPERVISED LEARNING

Limited label availability approaches
Active learning

• Few labels 
provided by an 
oracle, based on 
model’s queries

• Definition of a 
query policy 
(when does the 
model request 
new labels?)

• Model identifies 
regions of input 
space of low 
confidence

Semi-supervised 
learning

• Limited labelled 
data, unlabelled
data often 
abundant

• Build model on 
labelled + 
unlabelled data, 
infer missing 
labels (inductive)

• Infer new labels 
based on 
properties of 
known points 
(transductive)

Domain 
adaptation

• Labelled data for 
other domains, 
no labelled data 
for target domain

• Supervised 
learning on 
resource-rich 
domain

• Transfer 
technique to 
propagate 
knowledge to 
target domain

Unsupervised 
learning

• No labels 
available

• Learn cluster 
membership

• Learn feature 
representation

• Find recurring 
patterns in data
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SELF-ORGANIZING MAPS

• SOMs are unsupervised neural networks

• Producing low-dimensional representations of high-
dimensional data

• During training, SOM weights are iteratively updated 
to resemble inputs in a dataset

• After the training, the SOM has learned:

• what the inputs “look like”

• a notion of similarity among digits

• For example, “7” is close to “1”, far away from “0”

• Expressive power of SOM depends on its granularity!
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2-STEP TRAINING

(1) Train a small 
SOM on a fraction

of dataset Large SOM with 
nodes replicated from 

the small SOM

(2) Fine tuning the weights
of the large SOM

on remainder of dataset

exploration

tuning

Giobergia, F., & Baralis, E. (2019, December). Fast Self-Organizing Maps Training. In 2019 IEEE International Conference on Big Data 
(Big Data) (pp. 2257-2266). IEEE.
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PERFORMANCE DEGRADATION 
& TIME IMPROVEMENTS
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(DIGRESSION)
SOM & RSD

• Collaboration with UniTO

• Dept. of Physics

• ML applied to RSD sensors

• Resistive Silicon Detectors

• From signals to particle position

• (+ time, as a next step!)
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PRELIMINARY RESULTS

• From signals to (x, y) coordinates

• Multi-output regression problem

• Data from experimental sessions

• Approaches:

• Feature extraction + tree-based approaches

• Feature extraction + FCNN

• Multiple sensors studied

• Spatial resolution ~ 5 μm

Siviero, F., Giobergia, F., Menzio, L., Miserocchi, F., Tornago, M., Arcidiacono, R., ... & Sola, V. (2022). First experimental results of the spatial
resolution of RSD pad arrays read out with a 16-ch board. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, 1041, 167313.
Tornago, M., Giobergia, F., Menzio, L., Siviero, F., Arcidiacono, R., Cartiglia, N., ... & Sola, V. (2023). Silicon sensors with resistive read-out: Machine 
Learning techniques for ultimate spatial resolution. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, 1047, 167816. 12



EVENTS TO (COARSE) IMAGES

• Each event (particle passage) can be 
seen as a coarse image

• 3x3, 4x3, and similarly low resolutions

• Image-based approaches come to 
mind…

• But what good are these low-res 
images?

• Can we enhance them?
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SOM-BASED ENHANCING

• Train a supervised SOM

• Active (winning) neurons known in advance

• Ground truth coordinates of each event

• Images obtained as activation maps

• Larger SOM = more fine-grained images

• 25x25, 50x50, 100x100 è

• Suitable candidate for 2-step training!
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DOMAIN ADAPTATION

Limited label availability approaches
Active learning

• Few labels 
provided by an 
oracle, based on 
model’s queries

• Definition of a 
query policy 
(when does the 
model request 
new labels?)

• Model identifies 
regions of input 
space of low 
confidence

Semi-supervised 
learning

• Limited labelled 
data, unlabelled
data often 
abundant

• Build model on 
labelled + 
unlabelled data, 
infer missing 
labels (inductive)

• Infer new labels 
based on 
properties of 
known points 
(transductive)

Domain 
adaptation

• Labelled data for 
other domains, 
no labelled data 
for target domain

• Supervised 
learning on 
resource-rich 
domain

• Transfer 
technique to 
propagate 
knowledge to 
target domain

Unsupervised 
learning

• No labels 
available

• Learn cluster 
membership

• Learn feature 
representation

• Find recurring 
patterns in data
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CROSS-LINGUAL PROPAGATION

• In NLP there is a long-standing resource availability problem:

• English vs other languages

• Cross-lingual propagation approaches:

• Learn from English

• Propagate learned notions to other languages

• Dong and de Melo, 2018 introduce cross-lingual sentiment 
embeddings

• words mapped to latent vectors based on sentiment

• Vectors learned in English (high-resource domain), propagated to 
other languages (low-resource domains)

Dong, X. and De Melo, G., 2018, April. Cross-lingual propagation for deep sentiment analysis. In Thirty-Second AAAI Conference on Artificial
Intelligence.
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SENTIMENT EMBEDDINGS 
INFERENCE

Linear 
Classifier 1

Word 1 0.9

Word 2 0.1

Word 3 -0.5

… …

Word M 0.2

Context 
1

Context 
2

… Context 
N

Word 1 0.9 0.5 … 0.1

Word 2 0.1 0.4 … 0.9

Word 3 -0.5 -0.1 … 0.3

… … … … …

Word M 0.2 0.7 … -0.5

English dataset 
context 1

Linear 
Classifier 2

Word 1 0.5

Word 2 0.4

Word 3 -0.1

… …

Word M 0.7
English dataset 

context 2

Linear 
Classifier N

Word 1 0.1

Word 2 0.9

Word 3 0.3

… …

Word M -0.5
English dataset 

context N

…… …
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SENTIMENT PROPAGATION 
(LEXICON-BASED WORD GRAPH)

Lexicon

src:word 1 à tgt:word A

src:word 2 à src:word 3

tgt:word A à tgt:word B

src:word 2 à tgt:word B

src:word 2 à tgt:word A

src: Source language (e.g. English)
tgt: Target language (e.g. Italian)

src:word 1 tgt:word A

src:word 2 src:word 3 tgt:word B
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SENTIMENT PROPAGATION 
(VECTOR INITIALIZATIONS)

src:word 1 tgt:word A

src:word 2 src:word 3 tgt:word B

.9 .5 … .1

.1 .4 … .9 -.5 -.1 … .3

? ? … ?

? ? … ?

Context 
1

Context 
2

… Context 
N

Word 1 0.9 0.5 … 0.1

Word 2 0.1 0.4 … 0.9

Word 3 -0.5 -0.1 … 0.3

… … … … …

Word M 0.2 0.7 … -0.5

20



SENTIMENT PROPAGATION 
(GRADIENT DESCENT)

src:word 1 tgt:word A

src:word 2 src:word 3 tgt:word B

.9 .5 … .1

.1 .4 … .9 -.5 -.1 … .3

? ? … ?

? ? … ?

Context 
1

Context 
2

… Context 
N

Word 1 0.9 0.5 … 0.1

Word 2 0.1 0.4 … 0.9

Word 3 -0.5 -0.1 … 0.3

… … … … …

Word M 0.2 0.7 … -0.5
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SOME PROBLEMS 

• The approach requires a lexicon!

• source languageó target language

• Lexicons are hard to obtain

• Particularly for less commonly spoken languages

• The lexicon may not be exhaustive

• Many translations may not be explicitly included

• Loss function poorly defined

• Minimization cannot converge!

Lexicon

src:word 1 à tgt:word A

src:word 2 à src:word 3

tgt:word A à tgt:word B

src:word 2 à tgt:word B

src:word 2 à tgt:word A
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ALIGNED WORD EMBEDDINGS-
BASED WORD GRAPH

• Use aligned word embeddings to build the graph

• No need for a lexicon (only aligned word embeddings)

• Automatic extraction of semantic relationships among
multilingual words from latent space

excellent

eccellente

ottimo buono

Source word embedding 🇬🇧 Target word embedding 🇮🇹

23Joulin, A., Bojanowski, P., Mikolov, T., Jégou, H., & Grave, E. (2018). Loss in translation: Learning bilingual word mapping with a retrieval
criterion. arXiv preprint arXiv:1804.07745.



GRAPH CONSTRUCTION

excellent similarity

eccellente 0.95

ottimo 0.84

buono 0.56

(K = 3)

excellent

eccellente
ottimo

buono

0.560.
95

0.84

excellent

eccellente

buono ottimo

Source word embedding 🇬🇧 Target word embedding 🇮🇹

Giobergia, F., Cagliero, L., Garza, P., & Baralis, E. (2020). Cross-Lingual Propagation of Sentiment Information Based on BilingualVector
Space Alignment. In EDBT/ICDT Workshops (pp. 8-10).
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SOME RESULTS

• No lexicon required,

• AND better performance!

• Tested on binary sentiment prediction tasks:

• Positive/negative classes

• 7 languages, 9 datasets

• Various types of reviews

• Text à sentiment + word embeddings

• Classifiers:

• RF, SVM

• CNN, DC-CNN
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BEYOND SENTIMENT ANALYSIS

• The same approach can be used in other NLP tasks

• E.g. propagation of embeddings trained for custom domains

• And even outside of NLP!

• When there are entities that can be linked across domains

• E.g. social networks: same users, different platforms
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SEMI-SUPERVISED LEARNING

Limited label availability approaches
Active learning

• Few labels 
provided by an 
oracle, based on 
model’s queries

• Definition of a 
query policy 
(when does the 
model request 
new labels?)

• Model identifies 
regions of input 
space of low 
confidence

Semi-supervised 
learning

• Limited labelled 
data, unlabelled
data often 
abundant

• Build model on 
labelled + 
unlabelled data, 
infer missing 
labels (inductive)

• Infer new labels 
based on 
properties of 
known points 
(transductive)

Domain 
adaptation

• Labelled data for 
other domains, 
no labelled data 
for target domain

• Supervised 
learning on 
resource-rich 
domain

• Transfer 
technique to 
propagate 
knowledge to 
target domain

Unsupervised 
learning

• No labels 
available

• Learn cluster 
membership

• Learn feature 
representation

• Find recurring 
patterns in data
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PSEUDO-LABELLING + 
CONSISTENCY REGULARIZATION = 

FIXMATCH

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., ... & Li, C. L. (2020). Fixmatch: Simplifying semi-supervised learning with 
consistency and confidence. Advances in neural information processing systems, 33, 596-608.
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PSEUDO-LABELLING + 
CONSISTENCY REGULARIZATION = 

FIXMATCH

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., ... & Li, C. L. (2020). Fixmatch: Simplifying semi-supervised learning with 
consistency and confidence. Advances in neural information processing systems, 33, 596-608.

Threshold on 
softmax output… 
is it realiable?
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EXPLICIT CONFIDENCE 
MECHANISM (SUPERVISED)

Original
input

Weak 
augmentation

Weakly
augmented

input

Model

Confidence [0, 1]

Model prediction
(softmax)

Ground truth

Adjusted
prediction

Cross-
entropy loss

Confidence 
loss

dog

cat

31
Terrance DeVries and Graham W Taylor. Learning confidence for out-of- distribution detection in neural networks. arXiv preprint
arXiv:1802.04865, 2018. 



EXPLICIT CONFIDENCE 
MECHANISM (SUPERVISED)

Low-confidence predictions receive 
aid in the prediction made

Original
input

Weak 
augmentation

Weakly
augmented

input

Model

Confidence [0, 1]

Model prediction
(softmax)

Ground truth

Adjusted
prediction

Cross-
entropy loss

Confidence 
loss

dog

cat
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EXPLICIT CONFIDENCE 
MECHANISM (SUPERVISED)

Explicit confidence prediction,
with penalty for low confidences

Original
input

Weak 
augmentation

Weakly
augmented

input

Model

Confidence [0, 1]

Model prediction
(softmax)

Ground truth

Adjusted
prediction

Cross-
entropy loss

Confidence 
loss

dog

cat
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EXPLICIT CONFIDENCE 
MECHANISM (UNSUPERVISED)

Original
input

Weak 
augmentation

Weakly
augmented input

Model

Confidence [0, 1]

Model prediction
(softmax)

Strong 
augmentation

Strongly
augmented input

Model

Pseudo-label
inference

Model prediction
(softmax)

Cross-
entropy loss

34



EXPLICIT CONFIDENCE 
MECHANISM (UNSUPERVISED)

Original
input

Weak 
augmentation

Weakly
augmented input

Model

Confidence [0, 1]

Model prediction
(softmax)

Strong 
augmentation

Strongly
augmented input

Model

Pseudo-label
inference

Model prediction
(softmax)

Cross-
entropy loss

Threshold on explicit confidence 
for pseudo-label generation
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(PRELIMINARY) RESULTS

CIFAR10, 1k training iterations

CIFAR100, 1k training iterations
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(PRELIMINARY) RESULTS

CIFAR10, 1k training iterations

CIFAR100, 1k training iterations

Models with explicit confidence 
become more confident faster

(not necessarily correct, though!)
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